Summary of Security Related Changes made for AC8-3247
A PCI scanning service has identified two issues in AbleCommerce Gold relating to security. All versions of AbleCommerce Gold are at risk and should be patched. These are mandatory changes for PCI compliance.
The issues identified are:
Cross-Site Scripting (XSS) Failure
Browsers are capable of displaying HTML and executing JavaScript. If the application does not escape special characters in the input/output and reflects user input as is back to the browser, an adversary may be able to launch a Cross-Site Scripting (XSS) attack successfully.

[image:]
Pages that are vulnerable to XSS attacks:
/AdvancedSearch.aspx
/Checkout/EditBillAddress.aspx
/ContactUs.aspx

Cross-Site Request Forgery (CSRF)
If an application's requests do not contain any token, the operation can be vulnerable to a Cross-Site Request Forgery (CSRF) attack.
[image:]
Pages that are vulnerable to CSRF attacks:
/Members/MyWishlist.aspx
/Members/MyAddressBook.aspx

Instructions to Patch AbleCommerce Gold installations
Extract the files from the .zip folder and use a visual merge utility to compare your files with the ones provided. Make a backup of your files before beginning.
The changes noted below are given as a summary, so make sure you view, compare, and merge the new code to all applicable files.
1) Edit the \web.config
Change from:
<pages theme="Bootstrap_Responsive" validateRequest="false" enableEventValidation="false" clientIDMode="AutoID">
Change to:
<pages theme="Bootstrap_Responsive" enableEventValidation="false" clientIDMode="AutoID">
By removing: validateRequest="false"
[bookmark: _GoBack]
2) Edit the Global.asax
After this line:
protected void Application_BeginRequest(object sender, EventArgs e)
{
Add this new code:
 //TERMINATE SQL INJECTION ATTEMPTS
 int maxQueryLength = 500;
 string rawUrl = Request.RawUrl;
 int qIndex = rawUrl.IndexOf("?");
 if (qIndex > -1)
 {
 string query = Request.RawUrl.Substring(qIndex).ToUpperInvariant();
 if (query.Length > maxQueryLength || query.Contains("DECLARE%20"))
 {
 //POTENTIAL ATTACK
 Response.Clear();
 Response.Write("INVALID REQUEST");
 Response.Flush();
 Response.End();
 }
 }
3) Edit \admin\web.config
Change from:
<pages masterPageFile="~/Admin/Admin.Master" theme="AbleCommerceAdmin" />
Change to:
<pages masterPageFile="~/Admin/Admin.Master" theme="AbleCommerceAdmin" validateRequest="false" />
4) Merge changes into Master Layout files
The changes made to both base.master.cs files are part of updates to include an anti-forgery token. In the master file markup, the hidden fields (shown below) are included, and then in backend base.master.cs files, we use those hidden fields to read/write anti-forgery token values.
When a form is requested, it is sent with a valid forgery token and then upon submission, those values are checked in backend code which is part of base.master.cs file changes.
There are two sets of base pages. One for dynamic and one for physical pages like account, checkout etc. Using the files in the patch file as reference, you will have to MERGE and UPDATE your files in the following folders:
a) In the folder \Layouts\ and \Layouts\Fixed\
Edit both Base.Master files (2). For this step, you must reference the included files and merge the new code with your own.
b) In the folder \Layouts\ and \Layouts\Fixed\
Edit both Base.Master.cs files (2) to include the Anti-Forgery Token code. For this step, you must reference the included files and merge the new code with your own.
5) When finished, save and restart the application server.
If you are using the WAP version of AbleCommerce, don’t forget to recompile the project after making these changes.
image1.png

image2.png

